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ABSTRACT 
 
The ability to predict failure of mission-critical equipment at an early stage can 
substantially reduce maintenance costs for the Navy. Unplanned down-time can have 
severe consequences on safety, readiness, and operational and support costs. Condition-
Based Maintenance (CBM) strategies have been mandated by the Navy; however, the 
practical implementation of an effective predictive maintenance program requires 
diligence in data gathering, data analysis, and data conversion to maintenance decision 
information. While CBM has been well-proven as a cost-effective maintenance strategy, 
the Navy infrastructure may not yet have adapted to this new way of doing business. To 
make matters worse, the introduction of more complex heavily instrumented ship control 
and weapon systems aboard new vessels presents additional maintenance challenges. 
Valuable equipment performance information can be “mined” from the thousands of 
sensor measurements acquired by these modern systems; however, the extraction process 
can involve substantial human resources, encompassing a broad range of special 
analytical and computer skills, which are often lacking and/or expensive to develop and 
maintain throughout the organization. Simply put, there will be more data than people to 
analyze it. 
 
The exploitation of software agent technology for equipment health monitoring is rapidly 
becoming the only viable solution for converting voluminous raw machinery plant data 
into maintenance decision information. Software agents can automatically monitor, 
troubleshoot, and predict failures in complex machinery processes in support of drastic 
manning reductions on future ships, with a backdrop of more complex machinery 
systems and orders of magnitude more data to monitor. This approach has become 
commonplace in other contexts, considering that the average personal computer has 
several such software agents monitoring Internet security, virus detection, hard drive 
performance, etc. 
 
Software agents have been deployed to continuously monitor the health of main 
propulsion diesel engines on various Navy ships (MSC). The agents “live” on the 
shipboard data networks and perform comprehensive predictive analytics of engine 
performance to aid in maintenance management decisions as part of a CBM strategy. 
This paper provides a detailed description of diagnostic software agent analytics and 
presents a recent case history of engine faults called out by the agents that were 
subsequently verified during a shipyard engine overhaul. The value of software agents for 
effective equipment health monitoring on minimally-manned ships and as rational 
maintenance decision aids for both onboard and distance support are also discussed. 
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Introduction 
 
A primary goal for introducing new technology into shipbuilding and operations is 
minimizing life cycle cost. Among the major cost factors for ship operations are manning 
and maintenance. Design strategies focused on reducing crew size involve more 
extensive automation of machinery monitoring functions, primarily through increased 
sensor instrumentation. Other design strategies, particularly for naval vessels, focus on 
increasing survivability through decentralized, distributed systems, resulting in more 
complex machinery plants, with redundant systems. Such designs also generate increased 
requirements for monitoring and control automation.  

Following either of these strategies creates maintenance-related operational challenges. 
More complex machinery plants generate requirements for more extensive equipment 
monitoring, as well as more comprehensive knowledge and skills on the part of 
operations and maintenance crews. Crew training requirements will grow with system 
complexity. There will be more machinery data to monitor, with fewer people having less 
time to analyze it. Yet with reduced manning, the importance of keeping a constant 
vigilance in machinery performance assessment will never be greater, as the attendance 
to machinery failures will draw a larger percentage of available onboard human 
resources. 

Reliability-Centered Maintenance (RCM) is a process for analyzing and establishing 
maintenance strategies for complex systems to determine system functions, equipment 
failure modes and causes, the impact of functional failures, and optimal strategies for 
managing potential failures, including predictive maintenance. RCM is part of overall 
process that manages the risk of losses associated with equipment failures through an 
effective maintenance program. Resources are allocated to equipment maintenance based 
on the risk impact of failures. In this context, maintenance is one of the many 
opportunities to improve equipment and system reliability. RCM also aids in identifying 
premature equipment failures through condition monitoring of machinery health, that is, 
through Condition-Based Maintenance (CBM). 

A CBM maintenance strategy typically involves performing maintenance only when 
there is objective evidence of need, while ensuring safety, equipment reliability, and 
reduction of total ownership cost. The fundamental goal is to optimize availability 
(readiness) while reducing maintenance and manning requirements. Proper application of 
CBM can reduce operating and support costs by providing a basis for maintenance 
decisions that focus scarce resources on that maintenance most needed to ensure safety 
and mission readiness. However, the implementation of an effective CBM program is not 
without cost. In order to be effective, equipment health monitoring and analytical tasks 
must be diligently and regularly performed. This can generate significant workload 
requirements on the part of the both shoreside and shipboard engineering personnel. 

Recent advances in intelligent software agent technology provide embedded analytical 
capabilities, such as failure trend analysis and enhanced prognostic and diagnostic 
techniques, to automate the bulk of the work necessary to continuously monitor 
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machinery health. Software agents can autonomously perform complex information 
processing tasks to identify impending failures and accurately predict remaining useful 
equipment life. Software agents can be deployed to automatically monitor and analyze 
hundreds of thousands of data points, while being integrated into existing shipboard 
automation system environments. 

Software agents can clone human intelligence in varying degrees, perform human-like 
reasoning, and interact with maintenance engineers. They can perform tedious, repetitive, 
time-consuming, and analytically complex tasks more accurately and reliably than 
people. They can serve as expert assistants in monitoring, troubleshooting, and predicting 
failures in complex machinery processes in support of manning reductions on future 
ships. Imparting intelligent processing functions into software agents will allow the Navy 
to leverage valuable equipment OEM and organizational knowledge across a 
geographically distributed ship fleet. Agents can be distributed when and where needed 
to enhance fleet operational efficiency, platform and crew performance, and mission 
readiness. Agent intelligence can also be upgraded remotely throughout the platform 
lifecycle. The human-agent team can provide higher levels of platform 
readiness/reliability at far less cost than that of the equivalent human resource required to 
perform the same work. Hence, software agents can be viewed as maintenance workforce 
multipliers. 

Figure 1 illustrates the division of labor between software agents and engineering crews 
for typical equipment health monitoring tasks. The six main CBM processes include data 
acquisition, equipment performance analysis, condition assessment, fault diagnosis and 
isolation, problem verification, and maintenance/repair action. As shown here, agents can 
automate the majority of these processes, reducing the crew’s role to fault verification 
and corrective action. Furthermore, these crew activities only become necessary after a 
problem has been identified by an agent, resulting in very significant savings in 
manpower required for CBM implementation. 

Intelligent Software Agents for Condition-Based Maintenance 
 
Intelligent software agents will play an increasingly important role in monitoring, 
controlling, and troubleshooting complex machinery processes aboard future ships. A key 
benefit of software agents is their ability to automatically perform complex information 
processing tasks without being constantly controlled by people. Software agents can 
assist the crew in complex decision-making and other knowledge processing tasks related 
to CBM requirements. The role of prognostic software agents will grow as higher levels 
of plant automation and complexity raise the cost of continuous machinery monitoring 
and CBM beyond what the Navy can afford. New agent technologies can be deployed to 
automatically monitor and analyze hundreds of thousands of data points, while being 
integrated into existing shipboard automation system environments. 
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The main functions of software agents are: 
 
Clone human intelligence – Rare or valuable human intelligence embedded into agents 
can be used by people who may be less experienced about a particular application (e.g. 
integrated power system diagnostics). 
 
Perform human-like reasoning - Software agents are empowered with computer 
representations of human knowledge, allowing them to perform information processing 
tasks on behalf of their human counterparts. Agents can perform tedious, repetitive, time-
consuming, or analytically complex tasks on behalf of people who may not have the time 
or requisite skills to perform these tasks themselves. The ability to impart intelligent 
processing functions into artificially constructed agents allows the Navy to leverage 
valuable knowledge across a geographically distributed work environment, such as a ship 
fleet. Knowledgebases can be constructed as combined repositories of experiential and 
technical diagnostic knowledge from OEMs, subject matter experts, experienced 
operators, etc. Coupled with such knowledgebases, software agents become a valuable 
resource that can be distributed when and where needed to enhance operations and 
performance. 

Interact with human clients – Agents are designed to interact with people, rather than to 
replace people. Instead, they are a valuable extension of the human client. Agents 
tirelessly and autonomously perform their work in the background. This allows the crew 
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Figure 1 – Division of Labor for CBM Tasks 
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to address higher-level problems within their work environment. Through an agent’s 
direct interaction capabilities, they inform the crew of equipment status and report 
important operational events. The agents can also be called upon demand to perform 
specific tasks when a crewmember needs them done. Software agents can work 
autonomously, as the crew performs other work in parallel. The human-agent team can 
provide higher levels of productivity at practically the same cost as that of just the human 
resource alone. By applying software agents as workforce productivity multipliers, the 
Navy will be able to leverage its intellectual assets for maximum effectiveness by 
deploying agents throughout the fleet. 

Commercial-Off-The-Shelf (COTS) agent-based systems for diesel and gas turbine 
engine health monitoring have been in operation aboard various naval vessels for several 
years. The software agents are “knowledge-centric”, which means that each agent is 
linked to a specific diagnostic knowledgebase. The knowledgebase defines specific 
equipment failure modes and their related measurable effects through existing machinery 
plant sensors. Multiple knowledgebases can be created, with each pertaining to a separate 
machinery plant, specific system within a plant, or even an individual piece of equipment. 
 
The agents use artificial neural networks for diagnostic reasoning of machinery faults. 
The neural networks learn to associate patterns of alarm conditions with the machinery 
faults entered into knowledgebases. Once the fault-symptom associations have been 
learned, an agent uses this knowledge to perform real-time diagnostics and prognostics. 
The agent assesses current alarm conditions from real-time sensor inputs. It then recalls 
from its neural network memory those faults having symptom patterns most closely 
matching detected alarms.  
 
A separate neural network is created for each knowledgebase. The agent uses the neural 
network associated with the knowledgebase to which it is attached. Several different 
agents can share the same neural network. For example, separate diagnostic and 
prognostic agents may be created that both attach to the same knowledgebase. Both of 
these agents will use the same neural network for their monitoring and analysis tasks, one 
for diagnostics and the other for prognostics, as depicted in figure 2 below. 
 
Anatomy of a Diagnostic Software Agent 

 
Figure 3 depicts a conceptual view of sensor data flow and diagnostic processing for a 
generic diagnostic agent. The circled numbers next the various components shown in 
figure 3 are discussed below. As indicated, various software components are remotely 
upgradeable. This architecture can be applied across a range of device complexity. For 
example, at the simplest level, it can be applied for sensor diagnostics/prognostics. While 
being deployed primarily for complex devices, such as diesel and gas turbine engines, the 
underlying diagnostic technology is applicable to any electro-mechanical device and is 
extensible to large-scale systems. The design also accommodates the implementation of 
component-level intelligence, as it provides standard interfaces for reporting device 
health status. 



6 

 
 

 

Neural Net
Inferencing

Diagnostics

Current
Alarms

Fault
Diagnostics

Alarm
Monitoring

Prognostics

Neural Net
Inferencing

Predicted
Alarms

Fault
Prognostics

Trending
Analysis

Figure 2 – Knowledge-centric Intelligence for Diagnostics and Prognostics 

Figure 3 –Diagnostic/Prognostic Software Agent Data Processing 
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1
Real-time data is input to the diagnostic module and is used for both model 

estimation and residual generation. Sensor inputs can be acquired directly through 
internal electrical interfaces of the diagnostic module or be obtained via data 
communications interfaces with existing plant automation (e.g. Ethernet, wireless, etc.)  

2
Model-based diagnostics rely on some type of model for the device under diagnosis. 

For key diagnostic or performance parameters, the device model is used to derive 
expected device outputs (Ŷ) from other salient device measurements. The estimated 
output is then compared to actual device measurements (Y). The difference between 
expected and measured outputs forms a residual which is key to detecting anomalous 
device behavior. 

3
The alarm detection process detects anomalous conditions for the device. The 

distribution of residuals for healthy devices is statistically quantified. If the device model 
accurately reflects the device’s behavior, the residuals can be represented by a zero-mean 
Gaussian process with known variance. Instantaneous residual values exceeding 
statistically derived confidence regions are classified as anomalous and, along with other 
similarly classified alarms associated with other device parameters, are input to a 
diagnostic reasoner for interpretation. 

4
The diagnostic reasoner performs pattern recognition based on internal 

representations of diagnostic knowledge acquired from pre-training with the diagnostic 
knowledgebase. Advanced pattern recognition, neural network algorithms are applied to 
associate detected residual alarm conditions with known fault conditions. This technique 
is fast, memory efficient, capable of real-time performance, and produces Bayesian 
probability estimates based on the quality of match between stored diagnostic knowledge 
and detected alarm conditions.  

5
The diagnostic knowledgebase maintains the essential associations between fault 

conditions and expected alarm conditions. This knowledge can be acquired from a variety 
of sources, such as device manufacturer or other experts, failure experiments on the 
actual device, computer simulation experiments, historical customer trouble call or 
maintenance records, etc. This knowledge is typically derived through a failure mode and 
effects analysis on the device.  

6
Fault predictions (prognostics) are based on the residuals history. This function 

manages recording and maintenance of the historical data store. System configuration 
settings are used to control history length/memory and these are dictated by the 
prediction horizon of the prognostic (i.e. how far ahead one wishes to predict faults). 
Prognostic schemes have been developed to predict across multiple prediction horizons 
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(e.g. short, medium, and long-term prediction) using varying time resolutions of residual 
histories. 

7
Alarm prediction involves quantifying the trends in device residuals over time and 

using detected trends to predict future alarm conditions. This function analyzes the 
residuals history through statistical trending techniques to determine if any significant 
trends are occurring. A residuals trend indicates a discrepancy between the device’s 
actual behavior and its model estimate. These trends are early indicators of an anomaly, 
either in the device itself or one of its sensors. This function uses the same attributes of 
the residuals statistical distribution as the alarm detection function to determine if and 
when a device alarm condition will occur within the prediction horizon. 

8
The prognostics function performs similarly to the diagnostics function, but inputs 

predicted alarms instead of current alarms. It relies on the same diagnostic 
knowledgebase and pattern recognition function as diagnostics, but outputs predicted 
device faults based on detected trends in its residuals. As subsequently discussed below, 
trends can also be used to determine remaining time until predicted alarm occurrence. 
This important information can be relayed to maintenance decision makers in advance of 
an equipment failure to avoid disruptions of service, thus improving reliability, mission 
readiness, and platform availability. While the diagnostics function is more concerned 
with restoration of service, the prognostic function addresses avoidance of loss of service.  

9
The health report interface is a standard mechanism for passing diagnostic and 

prognostic information to other software, such as graphical user interfaces, as well as 
other systems such as maintenance management systems, etc. This interface can also be 
configured to replicate machinery health information ashore via standard Internet 
connections for various distance support applications. 

The agent software is designed to allow remote upgrades to embedded device diagnostic 
intelligence throughout the ship’s life cycle. The blue-shaded components of figure 3 
(circles 2, 3, 4, 5, 7, 8) are specifically designed for remote upgrading. To avoid product 
obsolescence, it is imperative that embedded diagnostic knowledge be current and as 
complete and accurate as possible. Diagnostic knowledge management is a critical 
supporting technology and updating onboard intelligence with new experiential 
knowledge accumulated over time is required throughout the ship’s life cycle. Remote 
upgrading will also minimize long-term technical support/service costs. 

Model-Based Equipment Performance Analysis 
 
Machinery performance assessment is accomplished by deriving baseline performance 
models for the salient parameters across the machinery operating range. Sensor 
measurements are then compared to the “healthy state” baseline model and performance 
deviations are computed. During anomaly prediction, these deviations are trended to 
determine if they will exceed statistical limits for the machinery process. Predicted 
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deviations falling beyond established operating thresholds are considered as anomalous 
behavior and are flagged as predicted alarms. Figure 4 shows an example of a typical 
baseline performance relationship. Measurements of charge air pressure are plotted 
against engine load. A regression curve has been fitted through the raw data to derive an 
equation expressing the mathematical relationship between the two measurements. The 
equation represents a baseline model and can be used to estimate expected values of 
charge air pressure for any engine load. 
 
Assuming the baseline relationship represents healthy equipment behavior, measured 
machinery performance can be expected to follow the baseline. If a machinery problem 
develops, its behavior will no longer follow the baseline and an anomaly between 
measured versus estimated values will occur. These discrepancies can readily be detected 
by monitoring the computed deviation between measured and estimated performance 
parameters. Software agents automatically compute, record, and analyze deviation 
values. 
 
The statistical distribution of deviation values are typically assumed to be Gaussian and 
are characterized by their mean and standard deviation parameters. The standard 
deviation is often multiplied by some factor to establish statistical thresholds defining a 
region within which the machinery performance deviations should normally vary during 
“healthy” operation.  By comparing machinery performance deviations to their statistical 
thresholds, anomalies can readily be detected and predicted. Deviation values that exceed 
established threshold limits are declared as alarm conditions by the agents.  

Early Failure Detection via Automatic Predictive Analytics 
 
Prognostic agents automate the highly technical analytical work that typical ship crews 
do not have the time or skills to perform. This work is essential, however, to achieving 
the benefits of condition-based maintenance. These agents perform historical data 
archiving, model-based performance assessment, automated trending analysis, alarm 
prediction, fault prediction, and prognostic event logging. Prognostic software agents 
predict future machinery faults and determine when maintenance should be carried out. 
By predicting machinery problems before they occur, unexpected breakdowns can be 
avoided. In the absence of significant trends, equipment overhaul periods may be 
rationally extended, thereby eliminating unnecessary maintenance work. The ability to 
predict future maintenance requirements leads to improved maintenance planning and 
cost management. Maintenance and repair decisions can be tied to actual plant operating 
conditions based on the severity of degrading trends and predicted plant problems. 

During anomaly prediction, historical deviations are trended to determine if they will 
exceed statistical limits in the future. Predicted deviations falling beyond established 
operating thresholds are considered as anomalous behavior and are flagged as predicted 
alarms. The software agents automatically compute, record, and analyze deviation values 
as the basis for prognostics. 

 



10 

 
The exact point in time that an alarm is predicted to occur correlates directly with the 
predicted time to failure of the related machinery component. The prognostic agent will 
report the estimated time-to-failure associated with each predicted machinery fault. This 
estimate is derived from the time available to run the equipment until the first predicted 
alarm associated with a given fault. The varying severity of different deviation trends 
may result in some alarms predicted to occur before others. By reporting the earliest 
predicted alarm, the user is given the maximum amount of time to take corrective action 
prior to actual equipment failure. 
 
The prediction process is illustrated in figure 5.  The Maximum History Length and the 
Prediction Horizon are prognostic agent attributes. All alarm conditions predicted in this 
manner are automatically assessed by the prognostic agent's neural network. 

 
 

Figure 4 – Typical Baseline Performance Relationship 

1.50

1.70

1.90

2.10

2.30

2.50

2.70

2.90

3.10

3.30

3.50

8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

Engine Power (MW)

C
ha

rg
e 

A
ir 

Pr
es

su
re

 B
 (B

A
R

)  
   

   
  .

  



11 

Case History: Diesel Engine Turbocharger Fouling 
 
Diagnostic and prognostic agents have been deployed on a number of Navy ships as part 
of MACSEA’s DEXTERTM system. In late August 2006, the USNS Big Horn was 
upgraded with the latest version of the agent software. Diagnostic event data retrieved 
from the vessel covering the September 2006 time period revealed several high 
probability diagnostic calls relating to the port main diesel engine (PME) turbochargers. 
In fact, turbocharger fouling was called out with 100% probability based on multiple 
symptoms detected on both banks of the engine. 
 
Subsequent discussions with the Chief 
Engineer aboard indicated that the engines 
had been frequently operated at low loads 
as mission requirements dictated. This 
practice is allowed by the manufacturer’s 
technical documentation but is not 
considered the preferred method of 
operation. Diesel engines are designed to 
operate most efficiently under loaded 
conditions (typically 80-90% of maximum 
power rating). Low loading causes low 
combustion temperatures, incomplete 
combustion and results in increased 
depositing of material on exhaust train 

Diagnostic Agents on USNS Big Horn 

Figure 5 – Predicting Future Alarm Conditions from Deviation Trends 
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components. When an engine must be operated at low loads for extended time periods, 
the manufacturer recommends periodically running the engine at 70% maximum 
continuous range (MCR) or greater for 15 to 20 minutes every 10 hours. This action is 
intended to prevent the accumulation of unburned fuel or oil in the cylinders. The Chief 
Engineer indicated that he was following this recommended practice during low power 
operations by routinely increasing engine power about every 4 hours to burn out carbon 
deposits. He also indicated that no obvious signs of system degradation were observed 
throughout the deployment and that the turbochargers were scheduled for regular 
overhaul during the ship’s upcoming shipyard period in December 2006.  

During the shipyard engine repair work, it was noted that significant carbon buildup and 
fouling had occurred throughout the port main engine and its components, including the 
air coolers and turbochargers. This verified that the diagnostic alert calls made by the 
software agents were indeed correct. 

Figures 6(a) through 6(d) show the main symptomatic conditions of turbocharger fouling 
detected by the software agents. The figures compare these performance parameters from 
before the overhaul (September 2006) to after the overhaul (December 2006).  
Turbocharger performance is noticeably improved subsequent to the overhaul. 

Figure 5(a) – PME Right Bank Charge Air Pressure – BEFORE OVERHAUL 
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Figure 5(b) – PME Right Bank Charge Air Pressure – AFTER OVERHAUL 

Figure 5 (c) – PME Right Bank Turbocharger Speed – BEFORE OVERHAUL 
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Agents Value for Reducing Maintenance Costs 
 
Software agents automate the data reduction and analysis work required to implement a 
fleet-wide Condition-Based Maintenance strategy. A key aspect of this involves 
monitoring for changes in machinery operating performance over time. This follows a 
model-based diagnostic approach, whereby baseline models of engine performance are 
continuously compared to actual performance. When actual engine performance deviates 
from the model (expected) behavior beyond reasonable statistical limits, software agents 
issue alerts to the crew, reporting the most likely machinery faults based on their 
embedded diagnostic intelligence.  

The analytics provided by the agents are fairly complex and would require excessive time 
and special engineering/statistical skills for the crew to perform. These analytical tasks 
typically are not performed on a consistent and reliable basis, yet in order to realize the 
benefits of CBM, this work must be accomplished. Software agents automate this work 
for the crew and provide actionable information to head off problems, not just raw data 
that sometimes is difficult to assimilate and correlate, particularly when large amounts of 
machinery data are being acquired. 

Software agents can provide ship-owners with these key benefits: 

• consistent and reliable equipment health monitoring 
- The analysis procedures can be as analytically complex as necessary 
- Expert diagnostic knowledge embedded into agents can be distributed 

across the fleet for a consistent, repeatable, scientific analysis of engine 
health, no matter what crew is aboard 

Figure 5(d) – PME Right Bank Turbocharger Speed – AFTER OVERHAUL 
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- Because it’s all automatic, there’s no additional crew workload 
- Historical diagnostic alert information is recorded for further review when 

it’s time to make informed maintenance decisions 
- Agents work 24/7, reliably and continuously 

 

• transformation of voluminous raw data into actionable information 
- Agents are an analytical tool to be used by the crew 
- Hundreds or thousands of data points can be monitored 
- Agents correlate, assimilate, and make sense out of even very subtle 

performance changes that often remain hidden in the volumes of data 
- Agents will direct the crew to detected problems that can then be 

investigated in more detail 
- Agents can help avoid large, expensive problems by alerting the crew at 

the earliest possible stage using predictive analytics 
 

Conclusions and Recommendations 
 
The levels of machinery automation in future ship designs will continue to increase, 
providing massive amounts of data for health monitoring of ship systems. The crews 
aboard future minimum-manned ships will be hard pressed to transform this raw data into 
information that supports an effective condition-based maintenance program. There will 
be more machinery data to monitor and fewer people with less time to analyze it. Yet 
with reduced manning, the importance of keeping a constant vigilance in machinery 
performance assessment will never be greater, as the attendance to machinery failures 
will draw a larger percentage of available onboard human resources. Software agents can 
continuously and automatically monitor machinery, identify impending failures, and 
predict its remaining useful life (or equivalently time to failure). Software agents can be 
empowered with computer representations of human knowledge, allowing them to 
perform information processing tasks on behalf of their human counterparts. The ability 
to impart intelligent processing functions into software agents will allow ship 
maintenance managers to leverage valuable diagnostic knowledge across a ship fleet to 
enhance readiness while proactively minimizing maintenance costs. Once constructed, 
the agents become a valuable resource that can be distributed when and where needed to 
enhance operations and performance. Software agents will become workforce 
productivity multipliers, as the human-agent team will provide higher levels of 
productivity at practically the same cost as that of just the human resource alone. 
 
Diagnostic and prognostic software agents have been deployed to continuously monitor 
the health of main propulsion diesel engines on various Navy ships (MSC). The agents 
“live” on the shipboard data networks and perform comprehensive predictive analytics of 
engine performance to aid in maintenance management decisions as part of a CBM 
strategy. Diagnostic software agents are delivering value to the Navy, as described 
herein, by identifying equipment faults at the earliest possible stage, where remedial 
action is the least expensive. A recent case history of a diesel engine turbocharger fault 
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called out by software agents, verified during a subsequent shipyard engine overhaul, 
demonstrates that software agent technology has value for effective equipment health 
monitoring on minimally-manned ships and as rational maintenance decision aids for 
both onboard and distance support. 
 
The Navy has recently initiated a project to implement software agent technology aboard 
the LSD class ships for diagnostics and prognostics of the main propulsion diesel engines 
and ship service generators. The initial installation is scheduled as part of the mid-life 
upgrade of the first ship of the class in July 2008. 
 
To date, shipboard diagnostic software agents have been applied primarily to main 
propulsion diesel and gas turbine engines, as well as their supporting auxiliary 
subsystems. The implications for expanding agent application to other equipment are far 
reaching, ranging from health monitoring of very simple to very complex devices. A 
recommended strategy is to begin at the simple end of the spectrum and proceed to 
develop a comprehensive, integrated, multi-agent environment. Sensor diagnostics, for 
example, is the essential enabling technology for all shipboard control devices that 
require reliable data to synthesize decisions and actions. Yet, this area has traditionally 
been neglected for cost reasons and sensor diagnostic systems aboard Navy ships are 
severely lacking (e.g. as compared to aerospace systems). If a critical sensor fails, there is 
typically no estimate available of the measurement that the failed sensor should have 
provided. In the context of future all-electric Navy ships, this technology shortfall 
represents a significant barrier to implementing advanced system functionality that will 
support drastic manning reductions, integrated power system automation, and intelligent 
system reconfiguration under failure and/or battle damage conditions. None of this 
higher-level functionality can occur without accurate, reliable sensor diagnostic 
algorithms that can not only detected a sensor failure, but can also provide an analytical 
estimate of the lost sensor measurement to higher-level control systems. 
 
Once a reliable foundation of sensor systems has been established, agent technology can 
then be expanded to more complex devices, such as the integrated power system (IPS). 
Reduced manning initiatives will place high value on agent-embedded, upgradeable 
diagnostic knowledge within such complex devices. These systems should be self-
diagnosing and provide actionable information to the crews to mitigate failures at the 
earliest possible time. Figure 7 highlights some of the major categories of IPS 
components for which diagnostic software agent development should be considered. 

The Navy seeks both affordability and reliability for the current, and more importantly, 
the next generation ships. Software agent technology supports new diagnostic 
engineering paradigms for dealing with complexity of ship system designs, as well as to 
manage and extract maximum value from diagnostic knowledge. Previous diagnostic 
practices and tools applicable to past generations of ships, relying on people and paper-
based troubleshooting, are inadequate for future diagnostic technology delivery, 
particularly for advanced IPS designs. Integrating diagnostic knowledge via software 
agents into the ship systems will facilitate maintenance cost containment over the ship’s 
lifecycle. 
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Figure 7 – Target IPS Components for Diagnostic Software Agent Application 
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