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ABSTRACT 
 
Navy ships are being designed and modernized 
for minimal manning, supported by automation 
technology that will incorporate more 
dependence on onboard component level 
intelligence in concert with distance support from 
the shore-side naval community. Streamlined 
business processes are being introduced to reduce 
total ownership costs while achieving mission 
requirements. 
 
Accordingly, the U.S. Navy is embedding 
diagnostic software agent technology into its 
Advanced Engineering Console System (AECS) 
designs to help keep ship equipment running 
reliably within the context of reduced total 
ownership costs. To this end, intelligent software 
agents automate the critical analytical functions 
necessary for cost effective Condition-Based 
Maintenance. Intelligent software agents deliver 
real-time diagnostics and predictive analytics for 
various mission-critical systems, such as the main 
propulsion diesel engines, electric generators, and 
auxiliary systems. Although these are the first-
generation of software agents to be deployed on 
combatant vessels, it is envisioned that software 
agents will become as common place on future 
Navy ships as the anti-virus software running on 
most PCs today. 
 
The technological innovations described in this 
paper deliver new capabilities for automated 
diagnostics of equipment faults, warning of early-
stage equipment health problems, automatic 
generation of maintenance work orders, and 
immediate delivery of equipment health 
information to both shipboard crews and shore-
side support staff. Class-wide deployment on 
twelve U.S. Navy LSD vessels will occur across 
a four-year mid-life upgrade/modernization 
program. A business case analysis of the software 

agents estimated a return-on-investment of over 
13-to-1 in reduced LSD Class maintenance cost. 
 
INTRODUCTION 
 
U.S. Navy fleet maintenance can now be 
described as “Operations-Focused Maintenance”, 
striving to improve operational readiness and 
availability while simultaneously providing an 
enhanced surge capability. In the past, surface 
fleet maintenance needs were met through a two-
year cycle. Ships were deployed for six months 
and then spent the next 18 months primarily in a 
maintenance and training sequence. Although a 
six-month deployment schedule still exists, ships 
now must enter the crew training phase earlier, 
perhaps before maintenance has been completed. 
They must also be maintained in a higher status 
so that they can surge if required. Also, due to 
uncertain operational demands, ships may be 
deployed for longer or shorter periods than in 
past tradition. The primary challenge now is 
establishing the management processes to 
identify and complete necessary maintenance 
activities while meeting surge and other 
unpredictable operational demands. 
 
U.S. Navy requirements for Operations-Focused 
Maintenance include (Brooks 2008): 
 
• Engineering for reduced maintenance, 
• Extending time-between-overhauls, 
• Reducing time in depot maintenance, 
• Optimizing continuous maintenance through 

effective distance support, and  
• Improving onboard equipment health 

monitoring with CBM technologies. 
 
All of these factors can significantly reduce 
maintenance costs. 
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Maintenance Mega-Trends 
 
An urgent need to engineer for reduced 
maintenance becomes readily apparent when 
considering two major “maintenance mega-
trends” taking place: 
 
 1) New technology has dramatically increased 
the complexity of many ship systems, and 
 
 2) There is a continuing decrease in the skilled 
maintenance labor pool, caused partly by new 
systems complexity (i.e. new skill set 
requirements not being met), partly by workforce 
attrition, and planned manning reductions. 
 
These mega-trends will continue into the 
foreseeable future. 
 
Complex systems on naval ships are difficult to 
cost effectively maintain (Dean, Reina, and Bao 
2008, US OMB 2002). In general, the three types 
of maintenance applied to any equipment, 
irregardless of its degree of complexity, include 
corrective, preventative, and predictive 
maintenance. Of these three, predictive 
maintenance is impacted the most by complexity 
issues, as it requires expert-level system 
assessments to identify incipient and often very 
subtle problems such that maintenance action can 
be taken to avoid failures. Increased complexity 
of ship systems, particularly the automation, have 
made equipment failure detection more difficult, 
more time consuming, and more technically 
sophisticated.  
 
With regard to the declining maintenance 
workforce, a recent study found a 4.1% decrease 
in U.S. DOD and a 9.8% decrease in civilian 
maintenance workforces during the 1997-2001 
timeframe (Clifford, Callendar, and O’Meara 
2003). The study also concluded that, based on 
the average years of service, the DOD 
maintenance workforce is becoming younger and 
less experienced. The declining workforce has 
been accompanied by a significant increase in 
deferred maintenance actions across the Atlantic 
Fleet during the 1995-2000 timeframe, a 
significant portion of which was attributed to 
maintenance training shortfalls and manpower 
issues (Yardley, et al. 2006). The situation is 

likely to become more acute as even more 
complex, high-tech ship systems are introduced 
into the fleet. 
 
Software Agents as Workforce Multipliers 
 
The levels of machinery automation in future ship 
designs will continue to increase, providing 
massive amounts of data for equipment health 
monitoring, by some estimates, on the order of 
100,000 data points (Logan Jan/Feb2007). Future 
crews aboard minimally-manned ships will be 
hard pressed to transform this volumous raw data 
into information that supports an effective 
condition-based maintenance program. Simply 
put, there will be more machinery data to monitor 
and fewer people with less time to analyze it. Yet 
with reduced manning, the importance of keeping 
a constant vigilance in machinery performance 
assessment will never be greater, as the 
attendance to unexpected machinery failures will 
likely draw a larger percentage of available 
onboard human resources. 
 
Machinery performance monitoring is an area 
where the immediate exploitation of software 
agent technology can yield substantial economic 
benefits (Logan Dec2007). Software agents can 
continuously monitor machinery, identify 
impending failures, and predict remaining useful 
equipment life. Agents can perform the tedious, 
repetitive, time-consuming, or analytically 
complex tasks on behalf of sailors who may not 
have the time, skills, or motivation to perform 
these tasks themselves. Software agents can serve 
as expert assistants in equipment health 
monitoring, no matter how complex the 
machinery process. Agents can automatically 
monitor and analyze hundreds of thousands of 
machinery plant sensors, just as the anti-virus 
software on most PCs analyzes hundred of 
thousands of virus signatures unobtrusively in the 
background. 
 
Software agents can be empowered with 
computer representations of human knowledge, 
allowing them to perform information processing 
tasks exceeding the sailors’ capabilities. Once 
constructed, the agents become a valuable 
resource that can be distributed when and where 
needed to enhance operations and performance. 
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Their intelligent processing functions will allow 
ship maintenance managers to leverage valuable 
diagnostic knowledge across a ship fleet to 
enhance readiness while proactively minimizing 
maintenance costs. Software agents can serve as 
maintenance workforce productivity multipliers, 
allowing sailor-agent teams to achieve higher 
levels of ship readiness at reduced maintenance 
costs. 
 
EQUIPMENT DIAGNOSTIC 
AGENTS 
 
CBM and Reliability-Centered Maintenance 
(/RCM) are well-proven strategies for optimally 
managing the risk of equipment failure by 
maximizing equipment reliability and minimizing 
maintenance costs. However, meeting these 
objectives is becoming increasingly challenging 
due to the maintenance mega-trends previously 
discussed. Increasingly complex automation, 
voluminous data collection, deficient 
operator/analyst skill sets, and fewer maintenance 
resources highlight the need for intelligent 
software agents to cost-effectively implement 
machinery health monitoring as an integral 
component of advanced control systems. 
 
Software agents can be rapidly integrated into 
existing shipboard computer networks, adding 
significant capability and value to automation 
systems.  The agents can serve as virtual 
maintenance team members whose job is to 
oversee these advanced systems. This capability 
will become increasingly important with 
increases in system complexity, as maintainer 
training costs will become unrealistically high. 
(One cannot help to draw from the analogy of 
automobiles, which are now far too complex for 
the typical owner to troubleshoot and maintain). 
 
Intelligent software agents offer many advantages 
as embedded components of intelligent ships. 
Human intelligence can be cloned and then 
replicated by creating distributable 
knowledgebases; for example, equipment 
diagnostic or troubleshooting knowledge. 
Human-like reasoning can be emulated with 
advanced inferencing algorithms, such as 
artificial neural networks.  By coupling the 

knowledgebases and the inferencing techniques, 
the software agents can leverage corporate 
knowledge assets to automate complex and 
tedious tasks for sailors. Corporate knowledge 
assets are derived from the best possible sources, 
which typically include OEM technical 
information and Failure Mode and Effects 
Analysis (FMEA) performed by Subject Matter 
Experts. Figure 1 illustrates the consolidation of 
the diagnostic information into a knowledgebase, 
which is subsequently transformed into a neural 
network reasoner. The neural network becomes 
the embedded intelligence of the diagnostic and 
prognostic software agents. 
 
The Navy can benefit greatly from the agents’ 
ability to enhance the performance of 
inexperienced or overloaded ships force, as well 
as shore-side maintenance support staff. 
 
Agent Intelligence Creation 
 
The “knowledgebase-centric” software agents are 
characterized by three types of intelligence: 
 

 1) a reasoning mechanism, 
 2) diagnostic knowledge, and 
 3) equipment performance models. 

 
 Each of these will now be addressed. 
 
Diagnostic Reasoning with Artificial Neural 
Networks 
 
The fielded software agents employ artificial 
neural networks as their reasoning mechanism. 
Neural networks are well-proven pattern 
recognition devices, tolerant of noisy or 
incomplete input data, able to handle uncertainty 
well, capable of real-time pattern recognition, and 
able to learn fault classification tasks from 
training data. 
 
Neural networks are modeled after the neuron 
processing elements occurring in biological 
nervous systems. Neurons (processing units) 
receive input signals from other neurons, perform 
a weighted summation of those inputs and 
generate an output signal while performing a 
nonlinear transformation. An error correction 



4 
 

procedure of some type is typically employed for 
network learning via weight adjustments 
(Rumelhart, Hinton, and Williams 1986). Neural 
network-based diagnostics are more robust than 
rule-based systems because when one or more 
input values are missing, the network is still able 
to make a similarity pattern match from the 
training data that it has learned. 
 
The critical factor in deploying neural networks is 
having good training data. In the case of 
diagnostics, the training data relates equipment 
faults to specific measurable symptoms. A practical 
approach to generating this data is to conduct a 
FMEA on the equipment targeted for diagnostic 
coverage. The FMEA documents potential 
equipment failures, expected symptoms, and the 
probable causes for the failures. It is typically 
performed by subject matter experts, such as the 
Navy’s In Service Engineering Agents. Other 
possible diagnostic information sources include 
manufacturer’s technical documentation, equipment 
procedures for operation, maintenance and 
troubleshooting, in-house system expertise, and 
historical data. The results of the FMEA represent 
valuable diagnostic knowledge and can be rapidly 
incorporated into a knowledgebase and, in turn, a 
diagnostic neural network. Knowledge gaps or 
inaccuracies in the FMEA are dampened by the use 
of probabilistic neural network techniques. 
 
While many neural models exist, the Probabilistic 
Neural Network (PNN) was chosen for embedded 
agent intelligence, primarily due to the following 
advantages: 

 
• Fault classification probabilities are directly 

output from the PNN, generated by its 
nonlinear decision surfaces. 

• PNN is capable of handling situations in 
which one or more input variables are 
missing or corrupted using valid statistical 
treatment of uncertainty. 

• PNN can be rapidly deployed using existing 
experiential and empirical knowledge and can 
be readily updated as new knowledge is 
acquired. 

• PNN training is effectively instantaneous, 
unlike other neural methods that require 
hundreds of thousands of learning iterations. 

 
A PNN is used to classify symptom patterns 
according to the faults that may have generated 
the alarm conditions. A single PNN can be pre-
trained to learn the associations between a large 
number of faults and their corresponding 
symptom patterns. Once trained, the PNN is 
connected to the machinery control system to 
acquire machinery performance data and perform 
real-time diagnostics. Automated prognostics are 
a direct extension of diagnostics, coupled with an 
automated trending analysis function (Logan 
ASNE ISS 2007, Logan 2003). 
 
Many neural networks perform statistical 
computations on patterns contained in a training 
data set. These internal statistics are then used to 
classify new patterns presented as inputs to the 
trained network. The classification problem can 

Figure 1 –Software Agent Intelligence Creation 
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be expressed as an example of Bayesian 
classification where the objective is to categorize 
a set of inputs (symptoms). In the context of the 
diagnostic and prognostic applications, the 
classification categories represent the different 
machinery fault conditions. 
 
PNN uses a Bayesian decision strategy to classify 
unknown symptom patterns in a way that 
minimizes expected risk. As an example, 
consider only two possible fault categories, Aθ  
and Bθ . Based on a set of measurement 
symptoms: 
 

[ ]P
T XXXX ,...,, 21= ,  

 
the task is to decide whether the fault (or “state of 
nature”) is either Aθ  or Bθ .  The Bayes decision 
rule for this classification task, denoted d(X), can 
be expressed as: 
 
d(X) = Aθ  if )()( '' XPLPXPLP BBBAAA >  

(1) 
d(X) = Bθ  if )()( '' XPLPXPLP BBBAAA <  
 
where: 
 

'
AP , '

BP  =  a-priori probability of faults Aθ  and 

Bθ , respectively, 

AL  = loss associated with decision d(X) = Bθ , 
when the fault = Aθ  

BL  = loss associated with decision d(X) = Aθ , 
when the fault = Bθ , 

AP (X), BP (X) = probability density functions for 

Aθ  and Bθ , respectively. 
 
The structure of the Bayesian decision model is 
powerful and very useful if the a priori 
probabilities and loss functions are available for 
use in the model. It is worth examining the 
component factors of the decision model and how 
equipment reliability can be assessed with it. 
 
The a-priori probabilities of the two faults, 

'
AP and '

BP , may be difficult to accurately 

determine based on typical Navy maintenance 
information management practices. One approach 
is to derive component failure distributions from 
historical maintenance records, assuming 
comprehensive records are kept. Alternatively, 
OEM failure statistics, such as Mean-Time-
Between-Failure, can be used for a-priori fault 
probability estimations. In either case, the work 
effort in deriving these estimates can be 
substantial. Lacking any useful information, the 
effects of varying a-priori’s can be removed from 
the decision analysis by assuming that all faults 
are equally likely. 
 
The effects of making the wrong fault call, which 
in practice could also equate to making no call 
when a fault was actually present, are modeled 
though the loss functions in (1), i.e. AL and BL . 
Recall that AL  is the loss associated with making 
the wrong the decision, d(X) = Bθ , when the fault 
was actually Aθ . Loss values can be defined on 
different scales (e.g. monetary or criticality), 
however; as with the a-priori’s, the work effort 
involved in derivation of the loss functions could 
be substantial, as expert subjective analysis is 
typically required. 
 
Bayesian Fault Classification 
 
The PNN’s function is to classify or assign an 
input symptom pattern to a fault category. For 
most practical pattern classification problems, the 
Bayes optimal decision surfaces in this multi-
dimensional “pattern space” are non-linear, 
making classification assignment difficult. For 
the two category example involving the decision 
rule from (1) above, the decision boundary 
between the two fault categories, Aθ  and Bθ , is 
given by: 
 

AP (X) = C BP (X),   (2) 
 

where C = 
AA

BB

LP
LP

'

'

. 

 
 
The decision surface represented by (2) can be 
highly nonlinear, since there are few restrictions 
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on the density functions, AP (X) and BP (X). In 
practice, the decision surfaces for diagnostic 
problems involve a large number of fault 
categories. 
 
The key to using the PNN for diagnostics is 
estimating the class probability density functions 
(PDFs) so that the Bayes decision rules can be 
implemented. Non-parametric methods of PDF 
estimation have been reported by many 
researchers and used with good accuracy (e.g. 
Parzan 1962, Murthy 1966). PDF estimation 
embedded in the fielded software agents uses a 
Gaussian PDF estimator (Logan 2003). The PNN 
is readily trained from the results of the FMEA 
on the machinery plant. 
 
Embedded Diagnostic Knowledge for LSD 
 
Diagnostic knowledgebases were developed by 
performing a FMEA to identify all common or 
likely machinery faults. The targeted equipment 
for diagnostic coverage for the LSD class ships 
included four Colt Pielstick PC2.5 Main 
Propulsion Diesel Engines (MPDEs), four 
Fairbanks Morse OP38ND8-1/8 Ship Service 
Diesel Engines (SSDEs), and four KATO Ship 
Service Diesel Generators (SSDGs). In 
performing the FMEA, each fault was 
characterized by its measurable symptoms in the 
plant, as monitored by the MCS sensor 
instrumentation. Figure 2 shows the five salient 
steps in organizing and constructing a diagnostic 
knowledgebase. 
 
In addition to the MCS signal inputs, 
performance data manually recorded from a 
cylinder combustion analyzer is also input for 
diagnostic processing. A common set of cylinder 
combustion-related faults were developed and 
applied individually to all 112 cylinders 
comprising the four 16-cylinder MPDEs and the 
four 12-cylinder SSDEs. 
 
In total, approximately 4400 individual engine 
fault diagnostics are performed by software 
agents aboard each LSD vessel. 
 
The USS Gunston Hall (LSD 44) is the first 
vessel of the class to receive diagnostic software 

agents as part of her Mid-Life Upgrade. 
Installation was completed in July 2009. The USS 
Germantown will be the second installation 
during FY09, followed by ten additional vessels. 
 

 
 
 

 

Figure 2 - Steps in Building 
Diagnostic Knowledgebase 
 

 

USS Gunston Hall 
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Diagnostic Agent Information Processing 
 
Multi-agent techniques have been successfully 
applied to various distributed problem solving, 
information fusion, computing applications. In 
addition to localized data processing and 
computation, advantages include scalability, 
since once an agent’s standard data processing, 
collaboration, and communication functions have 
been defined, additional agents can be deployed 
as needed when new equipment is added to an 
existing configuration. 
 
The case for distributed machine intelligence and 
decentralized ship system architectures was 
presented in (Drew and Scheidt 2004), which 
proposed intelligent software agents as a generic 
deployment model to control and autonomously 
reconfigure all major ship systems, particularly 
under battle damage situations. As increases in 
processing power and advances in control theory 
make modern controllers more capable, the 
expected complexity of ships systems will likely 
increase exponentially in next generation ships. 
Future ship systems may be comprised of tens of 
thousands of connected components. 
Autonomous control using intelligent software 
agents appears to be one of the few options 
available for dealing with an enormous number of 
data elements and possible equipment states. 
Software agents used to implement distributed 
machine intelligence will allow collaborative 
control during reconfiguration situations. 
Diagnostics must be performed within the 
embedded agent intelligence on each device. 
Health status information can then be propagated 
over the control network to facilitate system 
level, real-time, dynamic control. The LSD 
modernization represents the first-generation 
deployment of such agents in the fleet. 
 
Figure 3 depicts an overview of sensor data flow 
and diagnostic processing for a generic diagnostic 
agent (Logan 2007). This architecture can be 
applied across a wide range of device complexity, 
as the underlying diagnostic technology is 
applicable to any electro-mechanical device and 
is extensible to large-scale systems. The design 
also accommodates the implementation of 

component-level intelligence, as the neural 
network techniques previously described are 
amenable to chip-level deployment. The design 
provides for standard interfaces for reporting 
device health status to other integrated systems as 
part of an open-systems architecture. For LSD 
Mid-Life, the architecture illustrated in figure 3 
was deployed for health monitoring of the 
MPDEs, SSDEs, and SSDGs. 
 
Referring to figure 3, real-time data is input to the 
diagnostic module and used for both model 
estimation and residual generation. For LSD, 
sensor inputs are acquired directly via two data 
communications interfaces; one with the MCS 
and a second interface to the Shipboard 
Automated Maintenance Management (SAMM) 
system. The MCS interface provides strictly real-
time data from the machinery plant. The SAMM 
interface supplies data manually collected via 
Personal Digital Assistants (PDAs) for sensor 
readings not currently connected to the MCS. 
 
Agent – Machinery Control System Interface 
 
The LSD MCS consists of multiple 
Programmable Logic Controllers (PLCs) forming 
the Advanced Engineering Console System 
(AECS) network. Roughly 4000 data signals are 
transmitted across the AECS LAN amongst the 
various PLCs. The MCS software acts as an 
intermediate “data broker” to all external data 
consumers, such as the software agents. The 
MCS software developed by the U.S. Naval 
Surface Warfare Carderock Division 
(Philadelphia) shields data consumer applications 
from signal changes at the PLC level that may 
occur over the life of the ship. The LSD 
diagnostic software agents acquire approximately 
450 MCS signals in real-time. 
 
The LSD network architecture shown in figure 4 
allows the software agents to distribute 
diagnostic/prognostic results to MCS 
workstations located throughout the AECS LAN. 
Sailors have the capability to monitor the 
equipment’s health from any workstation 
location. 
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Shipboard Automated Maintenance 
Management System Interface 
 
The Shipboard Automated Maintenance 
Management (SAMM) system, developed by the 
U.S. Navy’s Military Sealift Command, has been 
adopted for use aboard LSD and other vessel 
classes as a preventive maintenance tool. SAMM 
is an automated system for documenting onboard 
maintenance and equipment configuration 
control. SAMM integrates various software 
applications, including maintenance scheduling, 
machinery history record keeping, machinery 
vibration monitoring, lube oil analysis, electronic 
watchkeeping data collection, and diesel engine 
combustion analysis. SAMM also provides fleet-
wide maintenance data management through 
periodic transmissions of individual shipboard 
SAMM databases to a centralized, fleet database 
ashore. 
 
Referring back to figure 3, the software agents 
employ model-based diagnostics. For key 
diagnostic or performance parameters, the device 
model is used to derive expected device outputs 
(Ŷ) from other salient device measurements. The 

estimated output is then compared to actual 
device measurements (Y). The difference 
between expected and measured outputs forms a 
residual which is key to detecting anomalous 
device behavior. These residuals are used in all 
diagnostics and prognostics, as opposed to raw 

Figure 3 - Diagnostic/Prognostic Software Agent Data Processing 

Figure 4 – Software Agent Network Architecture 
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sensor measurements. For LSD, initial baseline 
models were developed from test data provided 
by the engine OEM. A more complete modeling 
effort was then performed using actual machinery 
data collected during sea trials. 
 
An alarm detection process detects anomalous 
conditions for the device and generates the 
symptoms used for agent diagnostics. The 
distribution of residuals for healthy devices is 
statistically quantified. Instantaneous residual 
values exceeding statistically derived confidence 
regions are classified as anomalous and, along 
with other similarly classified alarms associated 
with other device parameters, are input to a 
diagnostic reasoner for interpretation. All 
abnormal conditions are recorded to a database 
along with the timestamp of occurrence. 
 
The diagnostic reasoner implements the PNN 
previously described. The PNN algorithms are 
applied to associate detected residual alarm 
conditions with known fault conditions. This 
technique is fast, memory efficient, performs near 
real-time, and produces Bayesian probability 
estimates based on the similarity between stored 
diagnostic knowledge and detected alarm 
conditions. 
 
The diagnostic knowledgebase maintains the 
essential associations between fault conditions 
and expected alarm conditions. This is the 
knowledge acquired from the FMEA process 
previously discussed. The knowledgebase can be 
continually enhanced over time and the agents 
can use upgraded knowledgebases without 
reprogramming. 
 
Fault predictions (prognostics) are based on the 
residuals history. This function manages 
recording and maintenance of the historical data 
store. System configuration settings control the 
prediction horizon of the prognostic (i.e. how far 
ahead one wishes to predict faults). Prognostic 
schemes have been developed to predict across 
multiple prediction horizons (e.g. short, medium, 
and long-term prediction) using varying time 
resolutions of residual histories. 
 
Alarm prediction involves quantifying the trends 
in device residuals over time and using detected 

trends to predict future alarm conditions. This 
function analyzes the residuals history through 
statistical trending techniques to determine if any 
significant trends are occurring. A residuals trend 
indicates a discrepancy between the device’s 
actual behavior and its model estimate. These 
trends are early indicators of an anomaly, either 
in the device itself or one of its sensors. This 
function determines if and when a device alarm 
condition will occur within the prediction 
horizon. 
 
The prognostics function performs similarly to 
the diagnostics function, but inputs predicted 
alarms instead of current alarms. It relies on the 
same diagnostic knowledgebase and pre-trained 
PNN as diagnostics, but outputs predicted device 
faults based on detected trends in its residuals. 
Trends are also used to determine remaining time 
until predicted alarm occurrence. While the 
diagnostics function is more concerned with 
restoration of service following a fault, the 
prognostic function addresses fault prevention 
and maintenance cost avoidance. 
 
The health report interface depicted in figure 3 is 
a standard mechanism for passing diagnostic and 
prognostic information to other software. For 
LSD, the software agents report all equipment 
failure alerts to the SAMM system, where 
maintenance Work Requests are automatically 
generated to both the sailors and, through 
distance support, to the support staff ashore. This 
process is described more fully below. Figure 5 
shows the contents of a typical prognostic alert 
message sent from the agent to the SAMM 
system. 
 
 
 

Figure 5 – Prognostic Agent Alert Message 

Prognostic Alert Message

FAULT ID
First_In Timestamp
Last_In Timestamp
Predicted Fault Probability
Predicted Time to Fault
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Automatic Generation of Maintenance 
Work Orders 
 
In an effort to streamline essential business 
processes related to reducing total ownership 
costs, the diagnostic and prognostic alerts 
generated by the LSD software agents are fed 
into the SAMM maintenance system for 
automatic conversion into Work Requests. These 
Work Requests are subsequently transmitted 
ashore for ISEA review. Approved Work 
Requests are converted into Work Orders via 
SAMM processing for follow-up action by the 
crew, as depicted in figure 6 below, Hence, the 
combination of software agents and SAMM 
automate the process of converting large amounts 
of raw engine data into actionable information. 
The Work Request/Work Order mechanism 
directs the crew and/or shoreside maintenance 
engineers to take follow-up action on detected 
machinery faults. 
 
BUSINESS CASE ANALYSIS 
(BCA) AND PROJECTED COST 
SAVINGS 
 
A BCA was performed to estimate the Return on 
Investment (ROI) and payback period for 
diagnostic software agent technology insertions 
into the LSD 41/49 Class’ Mid-Life program 

(NAVSEA/PMS470 2007). The BCA assessed 
only MPDE maintenance cost data that included 
for Organizational, Intermediate, and Depot level 
activities for a two year period. The objective was 
to determine the cost avoidance potential of 
software agents for MPDE maintenance. (SSDG 
maintenance cost avoidance was not considered 
in the BCA and represents additional potential 
savings to the Navy.) 
 
This study examined approximately ten-thousand 
Navy casualty data records and modeled this data 
through the software agent’s diagnostic features 
to determine casualty avoidance data if the agents 
had been installed. Casualty avoidance data was 
then converted to avoided MPDE maintenance 
cost. From this analysis, the projected cost 
avoidance from deploying software agents is 
approximately 6%. ROI determination was 
therefore based on an assumed 6% cost avoidance 
in annual LSD 41/49 MPDE maintenance. 
 
Based on the estimated 6% maintenance cost 
avoidance and the projected cost of software 
agent deployment, the ROI for diagnostic 
software agents on the LSD 41/49 Classes was 
estimated at  $13 to $1, with a projected payback 
period of 13 months. The projected payback was 
considered conservative since the BCA excluded 
potential savings for SSDG maintenance. 
 

SAMM
Shipboard

Review

Diagnostic 
Agent

Prognostic 
Agent

Prognostic
Alerts

Diagnostic
Alerts

SAMM
Shoreside

Work
Requests

Work
Requests

Work
Orders

Work
Orders

ISEAs

Approve

Figure 6 – Automatic Generation of Work Requests for Enhanced Distance Support 
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The BCA concluded that the installation of 
diagnostic software agents on all LSD 41/49 
Class MPDEs would provide distinct condition 
based monitoring and assessment advantages.  
Each ship outfitted with real-time, onboard 
diagnostic/prognostic software agents can help 
sailors and maintainers correct minor operational 
deficiencies before they cascade into major 
engine casualties, thereby reducing the overall 
Operation & Support costs. The average annual 
maintenance costs on the MPDEs have 
consistently increased over the last few years. 
Installation of diagnostic software agents will 
provide today’s shipboard engineers with 
immediate notification of impending MPDE 
casualties, a series of suggested maintenance 
and/or corrective actions to avoid these 
casualties, and the means to accurately document 
actual MPDE operating parameters prior to and 
during a casualty, should one occur. If these 
impending casualty notifications are promptly 
investigated and rectified, the number of 
catastrophic failures resulting from a series of 
minor cascading problems should decrease and 
the annual maintenance costs should be 
significantly reduced.  
 
CONCLUSION 
 
New diagnostic technology is being inserted into 
the LSD Mid-Life AECS/MCS upgrade in the 
form of software agents. These first-generation 
software agents will maintain a continuous health 
watch over mission-critical equipment, such as 
the main propulsion engines, electric generators, 
and related auxiliary systems. The agents 
implement expert-level diagnostic intelligence for 
over 4400 unique faults, provide early warning of 
equipment health problems, and data 
management services for life-cycle maintenance 
management. Through an interface to a 
computerized maintenance system (SAMM) 
developed by the Military Sealift Command and 
now used aboard LSD vessels, software agents 
trigger the automatic generation of maintenance 
Work Requests and Work Orders, while 
providing immediate delivery of equipment 
health information to the crew. 
 

The underlying technology behind the software 
agents has been field-proven for approximately 
ten years aboard other naval and commercial 
ships, as well as in various stationary electric 
power generation applications. Artificial neural 
networks, notably Probabilistic Neural Networks, 
form the basis of intelligent agent reasoning by 
encoding expert diagnostic knowledge into 
concise software modules for real-time, onboard 
implementation on COTS computer systems. 
 
The primary challenge of “Operations-Focused 
Maintenance” is establishing the management 
processes to identify and complete necessary 
maintenance activities while simultaneously 
meeting surge and other unpredictable 
operational demands. By automating the essential 
analytical work necessary to implement an 
effective CBM program, software agents can 
support the urgent need to keep ship equipment 
running reliably in the context of reduced 
shipboard maintenance capabilities and 
strengthened distance support. 
 
Major maintenance mega-trends taking place, 
such as increasing ship systems complexity and a 
decreasing skilled maintenance labor pool, will 
continue into the foreseeable future. Software 
agents can serve as expert assistants in equipment 
health monitoring, no matter how complex the 
machinery processes. Their intelligent processing 
functions will allow ship maintenance managers 
to leverage valuable diagnostic knowledge across 
a ship fleet to enhance readiness while 
proactively minimizing maintenance costs. The 
agents can be distributed when and where needed 
to enhance operational performance. They 
represent valuable maintenance workforce 
productivity multipliers, as sailor-agent teams can 
achieve higher levels of ship readiness at reduced 
maintenance costs. An independent business case 
analysis estimated their return-on-investment of 
over 13-to-1 in reduced LSD maintenance cost. 
 
The levels of machinery automation being 
installed during vessel upgrades, as well as that 
planned for future ship designs, will continue to 
increase, providing massive amounts of data for 
equipment health monitoring. Sailors will be hard 
pressed to transform voluminous amounts of raw 
data into useful information without the help of 
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software agents similar to those described in this 
paper. Software agent technology represents a 
potential solution for building truly intelligent 
ships of the future that can automatically assess 
and report their equipment health. 
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