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Abstract – Future Navy warships will have high demands 
for electric power to support electric drive propulsion, 
high-energy weapon systems, electrical auxiliary systems, 
and network centric warfare. The future ship Integrated 
Power System (IPS) will be vital to reliable operations and 
survivability. Power distribution will involve delivering 
electric power from multiple generation sources to a 
dynamic set of load devices whose priority and criticality 
will vary in real-time with battle/mission situations. These 
systems will be required to rapidly distinguish between 
normal and casualty transients, dynamically reconfiguring 
power distribution under failure conditions to meet 
changing load priorities. Control system complexity, 
adaptation timing, and manning constraints necessitate a 
shift of control functions from human operators to 
intelligent automatic control systems. Advanced 
capabilities, such as self-healing reconfiguration of system 
function and connectivity, will only be possible if system 
level knowledge of component failures is available under 
failure mode conditions. Diagnostic and prognostic 
coverage for system components will be essential for 
achieving survivability/reliability goals. Component level 
intelligence, manifested as device-embedded diagnostic 
and prognostic “software agents”, can provide health 
status reports covering sensors, components, subsystems, 
and all other mission-critical equipment.  

 
This paper examines IPS diagnostic requirements and 
emerging technologies available for insertion into future 
ship integrated power systems. 

 
Index Terms – All-electric ship, integrated power 

systems, diagnostics, prognostics, knowledge management, 
intelligent software agents, health monitoring, distributed 
intelligence, component level intelligence. 

 
I. INTRODUCTION 

 
Future Navy warships will have high demands for electric 

power to support electric drive propulsion, high-energy 
weapon systems, electrical auxiliary systems, and network 
centric warfare. Everything aboard the all-electric ship, from 
sensors, pumps, motors, advanced weapon systems to 
computer networks, will depend on electric power. The power 
distribution network will be vital to reliable operations and 
survivability. Power distribution will involve delivering 
electric power from multiple generation sources to a dynamic 
set of load devices whose priority and criticality will vary in 

real-time with battle/mission situations. High-speed, solid 
state switches coupled with advanced power electronics, 
intelligent controllers, and a communications infrastructure 
will form a power distribution network fed from multiple 
generation sources, much like the domestic electric utility 
power grid. Multiple electric generation and storage devices 
can be distributed throughout the ship, eliminating 
dependence on any single power source through dynamic load 
management and power grid connectivity. 

 
 The future ship Integrated Power System (IPS) will be 

comprised of advanced power electronics, including inverters, 
rectifiers, and converters. The IPS will be a critical aspect of 
survivability during major disruptions from battle damage and 
equipment failures. These systems must rapidly distinguish 
between normal and casualty transients, dynamically 
reconfiguring power distribution under failure conditions to 
meet changing load priorities. The IPS control architecture 
will be complex, and must be capable of supporting the 
reconfiguration of the power electronics functionality and 
network topology based on real-time mission needs.  Control 
system complexity, timing, and manning constraints 
necessitate a shift of control functions from human operators 
to intelligent machines. Future power and automation system 
requirements must support [1]: 

 
1) Reduction of shipboard manpower by 75-90%,  
2) Automated situation assessment and casualty 

response, 
3) Robust, survivable control architecture that combines 

hierarchical structure with distributed, component 
level intelligence. 

 
From an operational standpoint, embedded diagnostics will 

be essential to the continuous functioning of future control 
systems. Intelligent reconfiguration of system function and 
connectivity will require information on component failures in 
order to derive satisfactory solutions for power management. 
Component level intelligence, manifested as embedded 
diagnostic and prognostic “software agents”, can provide 
health status reports covering sensors, components, 
subsystems, and all other mission-critical equipment. Existing 
industrial automation technologies provide a cost-effective 
way to build a dependable, pervasive computing infrastructure 
that connects IPS supervisory control functions to the 
embedded, component level software agents. 

 

1 



ASNE 2007 Automation and Control Symposium 

From a life-cycle management standpoint, these systems 
must be economically supportable throughout a 40-50 year 
life cycle. Their increasing complexity necessitates that 
equipment manufacturers supply embedded diagnostic 
intelligence with their devices. New diagnostic engineering 
paradigms are required to manage and extract maximum value 
from diagnostic knowledge. 

 
 

II. EVOLVING INTEGRATED POWER SYSTEM 
TECHNOLOGIES 

 
A. Power Electronics 
 

A comparison of existing mechanical propulsion and 
electric power systems to an Integrated Power System (IPS) 
design is given in [2]. Figure 1 illustrates a zonal architecture 
designed to control electrical fault propagation by isolating 
each electrical zone from others, thereby containing any 
voltage transients within each zone. The ability to contain 
fault propagation and to intelligently redistribute power 
dynamically will provide greater design margins and enhance 
survivability. More complex IPS designs containing far many 
more power electronic components than illustrated in figure 1 
will emerge as “plug-and play” power electronic devices, such 
as Power Electronic Building Blocks (PEBBs) [3] become 
more heavily used. 

 
In parallel to the power electronics hardware evolution, 

advancements in control software are also occurring at a rapid 
pace. Distributed, modular and open control architectures [4] 
promise to reduce the design time, development cost, and 
ongoing software sustainment costs associated with evolving 
IPS control systems. An open systems strategy employs 
modular design and defines key interfaces using widely 
supported standards, where they exist. Traditionally, control 
software has been closely coupled to the hardware and has 
been difficult to design and maintain. Open control software 
architectures that emphasize modularity by encapsulating 
standard control algorithms into reusable code modules will 
allow faster development and less costly system maintenance. 

 

 
 

Figure 1 – Zonal IPS Architecture [2] 

Large savings in engineering time and cost can be realized 
if a universal controller [5] is available for evolving standard 
power electronic devices (PEBBs). A universal controller is 
typically a multi-function controller board designed to control 
and reconfigure PEBBs. Based on an open architecture 
environment, these controllers could be rapidly configured 
and deployed in scalable, multiprocessor configurations that 
match the power application. Connectivity of these controllers 
to supervisory data networks will facilitate higher-level 
control functions, such as diagnostics and reconfiguration 
over standard control communications interfaces, such as 
ControlNet, DeviceNet, LonTalk, etc. 

 
A pervasive controller computing environment will be 

made possible by messaging protocols that allow control tasks 
to be distributed across multiple processors on the control 
network [6]. This capability may allow future control systems 
to automatically configure themselves for execution on any 
number of processors, while allocating software control 
objects to different controllers as may become necessary. This 
will be an extremely useful capability with respect to creating 
a fault tolerant environment, whereby a failed node’s control 
functions may be redeployed across functioning control 
processors. 

 
Commercial versions of PEBB devices and modular 

universal controllers optimized for power electronics are 
available for configuring high-performance integrated power 
systems [7]. This technology provides high-speed control 
performance, standard data communications connectivity, and 
modular I/O, along with a mature suite of software 
development tools. 

 
B. Reconfigurable Control Systems 

 
Research on software reconfiguration techniques to support 

self-healing, survivable control networks has been 
accelerating. Automatic reconfiguration of the shipboard IPS 
is essential for future survivability requirements. Existing 
shipboard control systems are not effective in isolating faults 
and are highly dependent on human intervention. System 
complexity, timing constraints, and manning reductions 
necessitate that power restoration through reconfiguration be 
performed automatically by the IPS control system. Various 
approaches have been proposed for implementing the required 
control. A hierarchical system has been suggested that 
separates high level supervisory and coordination functions 
from low level safety critical functions [2]. In this approach, 
the low level or “component level” control would be 
collocated or embedded within the system devices being 
controlled. Through interfaces to all critical damage control 
sensing and response systems, these component level 
controllers would be somewhat autonomous, not relying on 
external support or data in order to carry out their intended 
functions. System faults and failures outside the scope of the 
component level control would not affect these controllers. 
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Physical separation of these low level controllers would also 
serve to enhance survivability. High level supervisory control 
functions would be carried out at different levels within the 
hierarchy, with component level controllers within an 
electrical zone perhaps coordinating with a zone level 
controller, which, in turn, may coordinate with higher level 
controllers. Information inputs on mission priorities and plans 
could to be factored into lower level control algorithms 
through the appropriate communications channels. 

 
Following a strategy of localized, embedded control within 

a hierarchical power control network, one can immediately 
predict that a very large number of these controllers will be 
necessary for the future all-electric ship. While current 
research has focused on this distributed intelligence approach, 
issues of scalability, as well as maintainability, have yet to be 
adequately addressed. Scalability of similar distributed 
domestic electric power networks is discussed in [8]. An 
increasing number of distributed energy resources are 
augmenting an electric power grid that was once characterized 
by a relatively few large generation centers. The control and 
information infrastructure will involve thousands to tens of 
thousands of distributed generation nodes, instead of just a 
handful of large utilities. To a large extent, this evolving 
distributed power network has been made possible by the 
same power electronics technologies being used in advanced 
shipboard IPS designs. Power electronics provide for reactive 
power generation and compensation, power flow control, 
harmonic compensation, voltage and frequency 
regulation/control, and real-time switching [8].  

 
C. Intelligent Software Agents 

 
The reconfiguration problem for the all-electric ship IPS 

can be decomposed into two complex subproblems: 
 
1) detection and localization of multiple system faults, 

which are likely to occur simultaneously during battle 
damage, and 

2) real-time reconfiguration of the power network. 
 
A multiple software agent paradigm has been outlined as an 

ideal way to control these large, distributed power networks 
for high reliability, power quality, and efficient power 
generation. Multi-agent techniques have been successfully 
applied to various distributed problem solving, information 
fusion, computing applications. In addition to localized data 
processing and computation, reported advantages include 
scalability, since once an agent’s standard data processing, 
collaboration, and communication functions have been 
defined, additional agents can be deployed as needed when 
new equipment is added to an existing configuration. 

 
The case for distributed machine intelligence and 

decentralized ship system architectures for survivability is 
presented in [9], which also proposes intelligent software 

agents as a generic deployment model to control and 
reconfigure all major ship systems, including power, 
propulsion, fluid systems, fire suppression, etc. As increases 
in processing power and advances in control theory make 
modern controllers more capable, the expected complexity of 
ships systems will likely increase exponentially in next 
generation ships. Future ship systems will be comprised of 
tens of thousands of connect components. Autonomous 
control appears to be one of the few options available for 
dealing with an enormous number of possible equipment 
states. Intelligent, autonomous control has the capability to 
address large complex systems, but survivability can only be 
supported by distributing this intelligent control to varying 
levels of granularity throughout the ship-wide control 
network. A common theme throughout most recent research is 
to create component level intelligence by embedding separate 
device controllers into the devices themselves. Fault 
diagnostics and reconfiguration control can be performed at 
the device level. Software agent technology [10, 11] can be 
used to implement distributed machine intelligence and allow 
collaborative control during reconfiguration situations. 
Diagnostics can be performed within the embedded agent 
intelligence on each device. Health status information can 
then be propagated over the control network to facilitate 
system level, real-time, dynamic control. Several researchers 
are following this development strategy [12, 13]. 

 
Figure 2 depicts a conceptual view of sensor data flow and 

diagnostic processing for a generic diagnostic agent [14]. As 
indicated, various software components are remotely 
upgradeable. This architecture can be applied across a range 
of device complexity. For example, at the simplest level, it 
can be applied for sensor diagnostics. While historically being 
deployed primarily for complex devices, such as diesel and 
gas turbine engines, the underlying diagnostic technology is 
applicable to any electro-mechanical device and is extensible 
to large-scale systems. The design also accommodates the 
implementation of component-level intelligence, as it is 
amenable to chip-level deployment and provides standard 
interfaces for reporting device health status. 

 
Referring to figure 2, real-time data is input to the 

diagnostic module and is used for both model estimation and 
residual generation. Sensor inputs can be acquired directly 
through internal electrical interfaces of the diagnostic module 
or be obtained via data communications interfaces with 
existing plant automation (e.g. Ethernet, wireless, etc.). 

 
Model-based diagnostics rely on some type of model for 

the device under diagnosis. For key diagnostic or performance 
parameters, the device model is used to derive expected device 
outputs (Ŷ) from other salient device measurements. The 
estimated output is then compared to actual device 
measurements (Y). The difference between expected and 
measured outputs forms a residual which is key to detecting 
anomalous device behavior. 
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The alarm detection process detects anomalous conditions 
for the device. The distribution of residuals for healthy 
devices is statistically quantified. If the device model 
accurately reflects the device’s behavior, the residuals can be 
represented by a zero-mean Gaussian process with known 
variance. Instantaneous residual values exceeding statistically 
derived confidence regions are classified as anomalous and, 
along with other similarly classified alarms associated with 
other device parameters, are input to a diagnostic reasoner for 
interpretation. 

 
The diagnostic reasoner performs pattern recognition 

based on internal representations of diagnostic knowledge 
acquired from pre-training with the diagnostic 
knowledgebase. Advanced pattern recognition, neural 
network algorithms are applied to associate detected residual 
alarm conditions with known fault conditions (discussed 
further in sections E). This technique is fast, memory 
efficient, capable of real-time performance, and produces 
Bayesian probability estimates based on the quality of match 
between stored diagnostic knowledge and detected alarm 
conditions.  

 
The diagnostic knowledgebase maintains the essential 

associations between fault conditions and expected alarm 
conditions. This knowledge can be acquired from a variety of 
sources, such as device manufacturer or other experts, failure 
experiments on the actual device, computer simulation 

experiments, historical customer trouble call or maintenance 
records, etc. This knowledge is typically derived through a 
failure mode and effects analysis on the device.  

Figure 2 - Diagnostic/Prognostic Software Agent Data Processing 

 
Fault predictions (prognostics) are based on the residuals 

history. This function manages recording and maintenance of 
the historical data store. System configuration settings are 
used to control history length/memory and these are dictated 
by the prediction horizon of the prognostic (i.e. how far ahead 
one wishes to predict faults). Prognostic schemes have been 
developed to predict across multiple prediction horizons (e.g. 
short, medium, and long-term prediction) using varying time 
resolutions of residual histories. 

 
Alarm prediction involves quantifying the trends in device 

residuals over time and using detected trends to predict future 
alarm conditions. This function analyzes the residuals history 
through statistical trending techniques to determine if any 
significant trends are occurring. A residuals trend indicates a 
discrepancy between the device’s actual behavior and its 
model estimate. These trends are early indicators of an 
anomaly, either in the device itself or one of its sensors. This 
function uses the same attributes of the residuals statistical 
distribution as the alarm detection function to determine if and 
when a device alarm condition will occur within the 
prediction horizon. 
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The prognostics function performs similarly to the 
diagnostics function, but inputs predicted alarms instead of 
current alarms. It relies on the same diagnostic 
knowledgebase and pattern recognition function as 
diagnostics, but outputs predicted device faults based on 
detected trends in its residuals. Trends can also be used to 
determine remaining time until predicted alarm occurrence. 
This important information can be relayed to controllers in 
advance of an equipment failure to avoid disruptions of 
service, thus improving reliability, mission readiness, and 
platform availability. While the diagnostics function is more 
concerned with restoration of service, the prognostic function 
addresses avoidance of loss of service.  

 
The health report interface is a standard mechanism for 

passing diagnostic and prognostic information to other 
software, such as controllers, as well as other systems such as 
maintenance management systems, etc.  

 
The agent software is designed to allow remote upgrades to 

embedded device diagnostic intelligence throughout the ship’s 
life cycle. The blue-shaded components of figure 2 (circles 2, 
3, 4, 5, 7, 8) are specifically designed for remote upgrading. 
To avoid product obsolescence, embedded diagnostic 
knowledge must be kept current and as accurate as possible. 
Diagnostic knowledge management is a critical supporting 
technology and updating onboard intelligence with new 
experiential knowledge accumulated over time will be 
required throughout the ship’s life cycle. Remote upgrading 
will also minimize long-term technical support/service costs. 

 
D. Sensor Diagnostics 
 

Sensor diagnostics represents one of the most important 
and least addressed issues on existing ships. Sensor 
instrumentation will have elevated importance for higher-level 
automation and control functions. Sensor accuracy must be 
qualified as valid prior to executing certain automated control 
functions. Sensor validation remains an arduous task based on 
the increasing volume of sensor measurements and the lack of 
physical sensor redundancy aboard typical ships. Historically, 
ship monitoring and control systems that rely on sensor 
measurements throughout the machinery plant have had little 
to no physical sensor redundancy. In these cases, the failure of 
a key sensor places the proper functioning of the control 
system at risk. Sensor diagnostics must be addressed and must 
be automated in order for advanced functionalities such as 
intelligent reconfigurable control to be realized. 
 

The number of sensors being incorporated into new ship 
designs continues to increase significantly over past levels. By 
some estimates, future all-electric ships will have 20 times the 
number of sensors as some modern ships, perhaps 100,000 or 
more. By today’s standards, this is a staggering number of 
sensors to maintain and calibrate. Periodic sensor calibration 
is currently an expensive, labor-intensive activity. For 

minimum manned vessels, there may inadequate human 
resources available to perform continuous sensor monitoring. 
Automatic, on-line sensor diagnostics represents the only 
feasible approach to sensor validation aboard future 
minimally-manned ships. 

 
In the context of ship survivability, sensors represent a 

weak link in the chain with respect to control system 
functionality under damage conditions. The ability to detect 
sensor failure and to provide a corresponding analytical or 
“soft” estimate to all control functions that rely on the 
measurement will be an essential requirement. Analytical 
redundancy costs far less than physical redundancy for critical 
sensor measurements and can lower the overall cost of the 
ship. 

 
A significant body of work on sensor validation and data 

recovery has been developed in industries such as nuclear, 
chemical processing, and aerospace. Applications are 
typically reliability critical and require embedded knowledge 
of sensor accuracy and redundant sensor estimates under 
failure conditions. A number of techniques have been used to 
validate sensor measurements against bias, drift, and complete 
failure [15, 16, 17]. Simple limit checking compares the 
difference between current sensor readings and the previous 
validated reading to some maximum possible rate of change. 
Sensor values can also be validated through comparisons with 
redundant values either obtained via physical measurements 
or derived analytically through a system model. In general, a 
set of residual values is generated and analyzed using an 
assortment of available statistical methods. The validation 
methods should be capable of detecting sensor bias and drift, 
as well as isolating complete failures. 

 
Nearly all past approaches to sensor validation rely on 

multivariate system models. Analytical or empirical models 
are built that exploit the relationships amongst correlated sets 
of sensors. The developed models can generate analytically 
derived sensor estimates that can be continually compared to 
measured sensor values to detect statistically significant 
differences. This generic process for sensor validation is 
illustrated in figure 3 below. 

Sensor 
Estimate 

Model 3 

Model 2 

Model 1 

Sensor 
Measurement 

Statistical 
Validation

Residual 

 
Figure 3 – Generic Approaches to Sensor Diagnostics 

5 



ASNE 2007 Automation and Control Symposium 

 
Fusing independent model estimates together into one 

single estimate as shown above can provide a more robust 
reading than that of any single sensor. Multi-sensor data 
fusion can provide reduced uncertainty and increased 
reliability of the system using the sensor signals when a 
sensor failure occurs. The end goal of the data fusion process 
is to derive a best estimate of a sensor signal that can be 
maintained for use by all external process applications, such 
as higher-level control systems. Various schemes have also 
been presented for quantifying confidence in the fused 
estimate, which could also be used in higher-level application 
decision-making [18, 19, 20]. 

 
Recently developed multivariate machine learning 

techniques have the capability to automatically synthesize 
sensor models from correlated information in machinery plant 
data. The models can then generate analytical estimates of 
various sensor measurements and performance parameters. 
Support Vector Machine (SVM) regression [21] synthesizes 
high dimensional models based on strong correlations 
amongst the model input data, which includes other 
machinery plant sensor measurements. The technique has 
been shown to be extremely accurate for both sensor and 
equipment diagnostics, and can produce analytically 
redundant estimates of signal values in the case of sensor 
failure. As an example, figure 4 plots SVM-estimated versus 
actual Compressor Discharge Pressure based on test data from 
a Navy gas turbine engine. The estimated values are 
practically indistinguishable from the actual values, with an 
average error of less than 0.75%. The SVM technique appears 
very promising for sensor diagnostics due to its high accuracy. 

 
 
 

 
Figure 4 – SVM Modeling of Gas Turbine CDP 

 
 

E. Neural Network-Based Equipment Diagnostics 
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A
s been done for equipment and devices that will comprise 

future IPS. General comparisons of the robustness of the 
various diagnostic approaches are not forthcoming however, 
and it can be assumed that more advanced diagnostic 
algorithms will continue to develop over time. Representative 
examples of electric machine diagnostics are discussed in the 
next section in order to expose diagnostic knowledge 
management issues. 
 

d agnostic systems is dealing with the issue of uncertainty. 
Uncertainty related to sensor failures and alarm generation 
can result in erroneous and/or unreliable performance of 
diagnostic systems. The treatment of uncertainties is, 
therefore, a serious concern for diagnostics employed for 
component level intelligence. Diagnostic system robustness is 
related to its ability to correctly detect specific faults in the 
system under diagnosis, given process measurements and 
symptoms (alarm conditions). Diagnostic performance metrics 
used to assess robustness include the following [22]: 

 
a

which is different from the actual fault), 
Probability of missed diagnosis (not dec
when one is present), 
Probability of false ala
has occurred), and 
Probability of corre

 
A
ove and will maximize (d). 
 
D

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
40

60

80

100

120

140

160

180

200

220

240

Data Sample

C
O

M
P

 D
IS

C
H

 P
R

E
S

S
 (P

S
IA

)  
   

 

 

Actual
SVM Estimate ocess measurements available, as well as to the diagnostic 

inferencing techniques used. Early expert systems employed 
rule-based or logic-based reasoning. The strict logic-based 
reasoning makes these types of systems vulnerable to bad 
input data, often the result of sensor problems. As a result of 
the “brittleness” of rule-based systems, they often tend to miss 
diagnostic calls when one of the rule antecedent conditions is 
false or missing, as will occur when a sensor problem 
develops. 

 
A
agnostic applications is artificial neural networks. Neural 

networks are modeled after biological systems and are known 
to be good pattern recognition devices. They have several 
attractive features, including: 

 
•
• Capable of real-time pattern recognitio
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• Capable of classifying novel input patterns not 
included in training data, and 

• Tolerant of noisy or incomplete input patterns. 
 
Neural networks have the ability to learn input/output 

associations for pattern recognition problems, as are typical of 
diagnostic and prognostic applications. Because neural 
networks are tolerant of noisy or incomplete input patterns, 
they can be used to implement more robust diagnostic systems 
that those following a rule-based approach. Even if one or 
more input values are missing, the network is still able to 
make the closest association to the input/output training data 
that it has learned. 

 
The critical aspect of deploying neural networks is having 

access to good training data that is representative of the 
input/output state space the network is likely to encounter in 
the application domain. One strategy for deploying diagnostic 
neural networks for is to train the network from detailed 
measurement signatures captured in coincident with specific 
machinery failure events. If the network can learn multi-
dimensional signatures of machinery behavior either leading 
up to or subsequent to a failure event, then the network can 
serve as a useful prognostic or diagnostic aid.  

 
A more practical alternative is to rely on the experiential 

and engineering knowledge of domain experts to construct a 
diagnostic knowledgebase suitable for neural network 
training. The effect of any inaccuracies in the training 
knowledgebase can be attenuated by incorporating 
probabilistic techniques, such as the Probabilistic Neural 
Network (PNN), into the system design [22].  

 
A Failure Mode and Effects Analysis (FMEA) can 

precisely define the scope of diagnostic coverage by providing 
detailed definitions of individual machinery diagnostics. Each 
machinery system is broken down into its major components. 
Probable failure modes of the machinery system components 
are then enumerated. The causes and effects (at the available 
sensors) are then traced out through the impacted systems. 
The results of the FMEA will define the diagnostic coverage 
of the system and will: 

 
• Enumerate the possible failure modes of the machinery 

systems and components, 
• Identify all available sensor measurements, and 
• Identify the fault/symptom relationships for automated 

diagnostics. 
 
For each fault enumerated during the FMEA, a 

corresponding list of related symptoms is identified and 
defines a diagnostic. All similar diagnostics are organized into 
a knowledgebase that can then be used to train the PNN.  

 
A PNN can be used to classify symptom patterns according 

to the faults that may have generated the alarm conditions. 

The PNN is pre-trained to learn the associations between a 
large number of faults and their corresponding symptom 
patterns, as depicted in figure 5.  The input vector, X, is 
comprised of the symptom pattern representing either current 
alarm conditions or predicted alarm conditions, depending on 
whether diagnostics or prognostics are being performed. 
Alarm conditions can be quantized to varying levels of 
resolution. Once trained, the PNN can be connected to the 
machinery plant automation system to perform real-time 
diagnostics. Automated prognostics are a direct extension of 
diagnostics, coupled with automated trending analysis and 
prediction functions. 

 

X1 XP X2 X3 

Input Units

Pattern Units

fC fB fA fN 

wA1 wNP 

 
Figure 5 – PNN for Computing Fault Probabilities 

 
The PNN is capable of handling situations in which one or 

more input variables are missing or are corrupted. This makes 
the method attractive for real-world applications where sensor 
failures occur on a regular basis, such as in a shipboard 
environment. 

 
Classification probabilities are directly output from the 

PNN, generated by its nonlinear decision surfaces, which 
approach the Bayes optimal. This is a clear advantage over 
rule-based approaches incorporating subjective probability 
estimates or confidence intervals without statistical basis. 

 
The PNN-encoded diagnostic intelligence, as well the 

computer code implementation of its algorithm, has a small 
memory footprint that makes it amenable to hardware 
embedding at the chip-level. Component level PNN-based 
health monitoring can be readily added to existing equipment 
microcontrollers with relative ease. “Smart” devices, such as 
pumps, motors, actuators, valves, etc. can be readily 
developed with their own customized health monitoring by 
way of PNN chip level implementations. 
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III. FUTURE DIAGNOSTIC REQUIREMENTS 
 

A. Diagnostic Knowledge Management 
 
Figure 6 highlights some of the major categories of IPS 

components for which diagnostic management strategies 
should be considered. These categories may not be all 
inclusive, but when reviewing the diagnostics development 
activities associated with each, the following becomes readily 
apparent: 

 
• There is an abundance of diagnostic development in 

progress, 
• Most of the diagnostic technologies remain relatively 

unproven in real-world service, 
• Diagnostics will certainly continue to evolve over the 

lifecycle of the ship, and 
• Upgrade mechanisms must be established to exploit 

new diagnostic technology for continuous 
improvement in systems reliability and affordability. 

 
For future platforms such as the all-electric ship, the 

diagnostic knowledge and methods, including embedded 
procedures, must be managed and maintained current. 
Standard mechanisms must be established early in the ship 
lifecycle such that vital systems are designed for diagnosis 
and continuing knowledge management [23, 24, 25]. Instead 
of the typical late lifecycle activity, diagnostic knowledge 
development and management should be integral part of the 
design and development phase of ship construction. This 
should include incorporation of diagnostic knowledge 
specifications and its management mechanisms into 
equipment solicitations during vendor selection. 

 
Because of survivability issues, it is imperative that 

embedded diagnostic knowledge be current and as complete 
and accurate as possible. Updating onboard intelligence with 
new experiential knowledge accumulated over time will be 
required to achieve and maintain the highest levels of system 
performance under all modes of operation. False or missed 
diagnostic calls will have severe ramifications within the 
intelligent, automated control environment. Diagnostic 
knowledge management will become a critical supporting 
technology for the all-electric ship. Equipment manufacturers 
can provide initial versions of diagnostic knowledge upon 
product delivery in a form that can easily be upgraded 
throughout the ship’s lifecycle, preferably in electronic form, 
fully tested and validated prior to shipboard modification. 

 
Existing diagnostic engineering practices and tools will be 

ineffective, inefficient, and unsustainable across the complex 
mix of equipments included in the all-electric ship design. 

Diagnostic tasks will be more difficult to implement unless 
approached from a bottoms-up perspective through 
intelligence embedding into the individual systems and 
devices, such that they become self-diagnosing. Standards are 
needed to specify to device manufacturers on just how to do 
this through common mechanisms designed for long-term 
knowledge management. Standards are also needed in order 
for the Navy to enforce compliance by the manufactures such 
that lifecycle diagnostic management goals are achievable. 
Today there is no formal methodology within the industry for 
defining diagnostic requirements, developing diagnostic 
intelligence, or providing knowledge management tools to 
maintain, build, and disseminate new diagnostic knowledge. 
However, methodologies and diagnostic knowledge 
management toolkits are evolving [26, 27, 28]. Reduced 
manning initiatives within the Navy will shrink both 
shipboard and shore side maintenance crews to minimum 
levels, placing even more value on embedded, upgradeable 
diagnostic knowledge. Traditional maintenance engineering 
methodologies, relying on people and paper-based 
troubleshooting information, must be replaced with a new 
model for knowledge management. Dynamic, frequently 
changing diagnostic knowledge must be delivered through 
electronic support systems that link manufacturers to their 
products, such that initial failure mode information generated 
during ship design can be rapidly upgraded throughout the 
ship’s life. These types of electronic support systems are 
emerging but need to make substantial and rapid progress in 
order to support future diagnostic and maintenance 
requirements of the Navy. 

 
B. Power source diagnostics 

 
In the near term, gas turbine generators will be the most 

likely major power source to the IPS. Alternate power sources 
include diesel generators, fuel cells, and battery power. There 
is large body of work involving diagnostics for both gas 
turbine and diesel engines. New techniques will continue to 
evolve, as electronic engine control technology becomes more 
advanced. In general, diagnostic procedures are quite 
sophisticated, require highly specialized knowledge and 
substantial computer resources, e.g. advanced vibration and 
acoustic emission signal processing, artificial neural network 
algorithms, etc. Research efforts are so broad with respect to 
gas turbine diagnostics that it is difficult to discern proven and 
most promising technologies from pure research projects. This 
situation demonstrates the need to rely on the engine 
manufacturer to act as a clearinghouse for the implementation 
of advanced diagnostic technologies for their engines, either 
by commissioning or carrying out the development internally.  
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Self-diagnosing engines, instrumented with the best 
diagnostic knowledge and techniques, are near reality today. 
In most cases, the existing diagnostics need to be extended for 
more complete coverage of failure modes and, in particular, 
upgraded with predictive capabilities. Because engine 
suppliers are in a position to receive performance feedback on 
their products and build diagnostic knowledge over time 
through service experience, common sense dictates that they 
should assume responsibility of managing onboard 
diagnostics. 

  
C. IPS controller diagnostics 

 
There appears to be a number of readily available, well 

developed commercial controller products on the market that 
can be incorporated into future IPS designs. These products 
offer mature support in both hardware and software and have 
a large experience base in electric utility applications with 
similar requirements as the all-electric ship IPS.  

 
Modern controllers are reliable, fast, and precise computer 

systems specifically designed for very fast analog and digital 
I/O control. The controllers are the heart of the power control 
network to which they are connected and manage. Should 
they fail, the entire network segment under their control is at 
greater risk, even with hot swappable back-up controllers in 
place. The controller should implement its own self 
diagnostics and be capable of reporting its health status to any 
interested external “agents” that are connected to it. 

  
 

D. Electric motor diagnostics 
 
The widespread application of electric motors for power 

generation, propulsion, thermal management systems, etc. will 
place a high priority on motor health monitoring as an integral 
component of IPS diagnostic requirements. A recent 
symposium offers a glimpse at the state-of the-art in electric 
machine diagnostic technology developments [29]. The major 
fault categories include bearing, stator, rotor, and insulation 
failures.  

 
Advances in signal processing hardware and software have 

accelerated research in motor diagnostics (prognostics). A 
multitude of diagnostic techniques have been developed and 
several may be required to provide more complete fault 
coverage for the electric motor. Table 1 summarizes some 
common electric motor faults and related diagnostic 
techniques being applied to detect those faults. These 
techniques are highly specialized, requiring significant 
expertise in their application. As such, many of these 
advanced techniques are ideal candidates for automation 
through intelligent software agents.  

 

Figure 6 – Diagnostic Knowledge Management of IPS Components 

E. Thermal management system diagnostics 
 
Thermal management will be interdependent with electrical 

power within the IPS. System level thermal management 
requirements call for distributed cooling while avoiding 
additional complexity, cost, and volume. New cooling system 
architectures must be decentralized, programmable, and 
capable of autonomous operation in a zonal configuration. 
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TABLE 1 – Common Motor Faults and Diagnostic 
Techniques 

 
FAULTS DIAGNOSTIC 

TECHNIQUES 
• Bearing failures 
• Stator faults causing 

opens or shorts of 
phase winding 

• Abnormal connection 
of stator windings 

• Broken rotor bar 
• Cracked rotor end-

rings 
• Static or dynamic air-

gap irregularities 
• Bent shaft causing 

rotor and stator to rub 
• Shorted rotor field 

winding 
• Gearbox failures 
• Insulation failures 

• Motor current signature 
analysis 

• Partial discharge pattern 
analysis 

• Neural networks 
• Wavelet packet transform 
• Genetic algorithms 
• Spectral analysis 
• Cross-correlation analysis 
• Fast Fourier Transforms 

(FFT) 
•  Leakage flux analysis 
• Non-parametric power 

spectrum 
• Fuzzy logic 
• Impulse testing 
• Symmetrical component 

analysis 
• Expert systems 

 
High-density electrical power and energy weapons require 

substantial cooling. The addition of advanced power 
electronics, advanced radar, dynamic armor, and weapons 
systems (e.g. EM Railgun, Free Electron Laser, etc.) are 
predicted to require a 700% increase in cooling capacity [30].  
 

Some alternative cooling technologies being investigated 
include thermoelectric air conditioning, thermoacoustic 
cooling, and magnetic refrigeration. New heat exchanger 
designs using new methods and materials are also being 
explored, including heat pipe technology, through-the-hull 
heat exchangers, and waste heat recovery systems.  

 
Distributed cooling system designs will require similar 

intelligence for automatic reconfiguration as that being 
developed for the IPS. Smart valve technology [31] will allow 
the development of intelligent fluid systems capable of 
detecting piping damage, isolating damaged sections, and 
dynamically reconfiguring the system to restore cooling fluid 
service through alternative piping paths [32, 33]. Diagnostics 
on cooling system components, such as valves, heat 
exchangers, pumps, etc. will play an integral role on 
reconfigurable control of these and other thermal 
managements systems.  
 
F. Power electronics device diagnostics 
 

Many of the same diagnostic techniques listed in Table 1 
may also be applicable to diagnostics of power electronic 
devices. However, the time scale at which they must be 

performed will be very rapid, perhaps within tens of 
milliseconds. Safe operation of the IPS will require high speed 
data acquisition, signal processing, and rapid classification of 
perturbations such that the appropriate protective control 
actions can be taken to minimize further power system 
degradation. Once again, diagnostic implementation requires 
substantial device knowledge and embedded diagnostics or 
built-in-testing (BIT) will be subject to periodic upgrading. 
Knowledge management can support long-term sustainment 
costs for these devices, as well as the other key components of 
the IPS.  

 
IV. CONCLUSIONS 

 
The Navy seeks both affordability and reliability for the 

next generation all-electric ship. New diagnostic engineering 
paradigms will be required to deal with complexity of ship 
system designs, as well as to manage and extract maximum 
value from diagnostic knowledge. Previous diagnostic 
practices and tools applicable to past generations of ships are 
inadequate for future diagnostic technology delivery, 
particularly for advanced IPS designs. Integrating diagnostic 
knowledge into the ship design strategy and delivered systems 
will facilitate maintenance cost containment over the ship’s 
lifecycle. Diagnostic knowledge management is a dynamic 
process that begins at the earliest stages of ship design and 
continues throughout the vessel’s life. 

 
Advancements in ship system technologies present 

significant challenges to the engineering community. The 
accuracy of embedded diagnostics is essential to 
implementing advanced reconfigurable control algorithms, of 
which ship survivability will be dependent. High levels of 
diagnostic knowledge are also important to isolating and 
quickly restoring systems to design optimal conditions. 
Increasing complexity of ship systems, coupled with a multi-
vendor supply environment, highlights the shortfalls of 
existing diagnostic engineering and delivery methods. For 
future platforms such as the all-electric ship, diagnostic 
knowledge must be managed and maintained current. 
Standard mechanisms must be established early in the ship 
lifecycle such that vital systems are designed for diagnosis 
and continuous knowledge management.  

 
Equipment manufactures should supply embedded 

diagnostics within their devices to allow a distributed control 
strategy. This will support control functions related to ship 
survivability, such as intelligent reconfiguration of integrated 
power systems that rely on knowledge of equipment health 
status. This will also support drastically reduced manning 
levels for troubleshooting system faults. It is imperative that 
embedded diagnostic knowledge be current and accurate.  
False or missed diagnostic calls will have severe ramifications 
within the intelligent, automated control environment. 
Diagnostic knowledge management, including onboard 
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updating with new experiential knowledge, will become a 
critical supporting technology for the all-electric ship. 

 
Reduced manning initiatives will place high value on 

embedded, upgradeable diagnostic knowledge. Traditional 
maintenance engineering methodologies, relying on people 
and paper-based troubleshooting, must be replaced with a new 
model for knowledge management. Dynamic, frequently 
changing diagnostic knowledge must be delivered through 
electronic support systems that link manufacturers to their 
products, such that initial failure mode information generated 
during ship design can be rapidly upgraded throughout the 
ship’s life. Knowledge standards are needed to enforce 
compliance by the manufacturers such that lifecycle 
diagnostic management goals can be met. 
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